高效铌酸锂薄膜波导模斑转换器设计

丁国建1, 王晓晖1, 冯琦1, 于萍1, 贾海强1,2, 陈弘1,2, 汪洋1*

(1. 松山湖材料实验室, 广东东莞 523808;

2. 中国科学院物理研究所清洁能源重点实验室,北京 100190)

摘 要: 铌酸锂薄膜光子集成技术在高速光电子领域不断凸显,被广泛用于各种片上功能实现,如电 光调制、光频梳、滤波器、非线性光学频率转换器、非线性量子光源、激光器等。在铌酸锂薄膜光子集成 技术发展过程中,目前面临的一个重要的技术瓶颈就是铌酸锂薄膜纳米波导与单模光纤的高效耦合。 针对这一问题,设计了一种基于 SiO₂、SiON 锥形结构以及双层铌酸锂锥形结构的模斑转换器,实现铌 酸锂薄膜纳米波导与单模光纤之间模式和能量的高效传递与转换。采用三维有限差分光束传播法对 器件结构进行了模拟仿真,并优化了结构参数,可实现与铌酸锂薄膜波导与单模光纤的高效耦合,耦合 效率在 82.2%~89.0% 之间,同时,得到了±1.8 μm 光纤耦合对准容差,可为下一步制备出高效耦合的铌 酸锂薄膜光子器件提供参考。

关键词:集成光学; 模斑转换器; 三维有限差分光束传播法; 铌酸锂薄膜; 耦合效率; 单模光纤中图分类号: O472⁺.3 文献标志码: A **DOI**: 10.3788/IRLA20220897

0 引 言

铌酸锂薄膜光子集成技术在过去十年增长迅速, 因其极具吸引力的材料特性,包括大的二阶非线性磁 化率、大的电光系数、宽的光学透明窗口、高折射率 等,目前已经用于实现包括调制器、微环谐振器、光 子晶体腔、及参量振荡器等^[1-5],并用于片上光学功能 实现,如非线性频率变换器^[6-7]、非线性量子光源^[8-9]、 激光器^[10]、电光调制、光频梳光谱仪等^[11-14]。然而由 于光纤的模斑尺寸与铌酸锂薄膜纳米波导的模斑尺 寸严重失配导致光纤与铌酸锂薄膜纳米波导的模斑尺 寸严重失配导致光纤与铌酸锂薄膜纳米波导耦合时 存在较大的耦合损耗,导致器件的插入损耗较大,严 重限制铌酸锂薄膜光子器件的实用化,因此增加片上 光学模式尺寸非常重要,不仅可以降低器件插入损 耗,还可提高波导与光纤耦合对准容差。

片上模斑转换器被广泛用于模场变换,实现波导 模场的变换。2019年,He等人采用双倒锥刻蚀波导, 实现与锥形光纤模场匹配,耦合损耗 1.7 dB/面^[15]。 2020年,Hu等人采用标准半导体工艺制造的端面耦 合器,与模场直径约为 3.2 μm的超高数值孔径光纤 (UHNAF) 耦合时, TE/TM 光在 1550 nm 处的每面光 纤芯片耦合损耗分别为 0.54 dB/0.59 dB^[16]。2021 年, Pan 等人采用双锥波导和 SU8 波导组合的边耦合器 实现耦合损耗 0.5 dB^[17]。

现有研究虽然都提高了耦合效率,但都是与锥形 光纤或者细径光纤的耦合,无法实现与单模光纤的高 效耦合,并且对于实际应用来说,聚合物波导的温度 稳定性又差,无法满足实际应用。文中采用三维有限 差分传播法针对单模光纤高效耦合的模斑转换器进 行仿真,结果表明,该结构可实现铌酸锂薄膜波导与 单模光纤 82.2%~89.0%的耦合效率,该设计可为铌酸 锂薄膜光子器件工程化应用提供理论依据和仿真指 导,有助于推动铌酸锂薄膜光子器件实用化发展进程。

1 模型及计算方法

1.1 结构设计模型

铌酸锂薄膜波导采用典型的 LNOI 脊型结构,如 图 1 所示,由硅基底、二氧化硅层 (SiO₂) 和铌酸锂 (LN)薄膜脊波导构成,通常 LN薄膜典型厚度为 600 μm,脊高度 0.25 μm,其满足单模条件的模式面积

收稿日期:2022-12-27; 修订日期:2023-01-17

作者简介:丁国建,男,高级工程师,博士,主要从事半导体材料和器件方面的研究。

通讯作者:汪洋,男,研究员级高级工程师,博士,主要从事半导体材料和器件方面的研究。

比较小,约1μm。典型单模保偏光纤的模场直径一般 大于6μm,导致光纤与波导之间存在显著的模式失 配,导致较大的耦合损耗。

图 1 铌酸锂薄膜脊波导结构示意图

Fig.1 Schematic diagram of lithium niobate film ridge waveguide structure

为了实现铌酸锂薄膜波导端面集成模斑转换器实现模式和能量的传递与转换。文中采用模斑转换器实现模式和能量的传递与转换。文中采用模斑转换器由SiO₂、SiON锥形结构以及双层LN锥形结构组成,其结构如图2所示,其中双层LN锥形结构、SiON锥形结构用于光耦合与绝热模式转换,其中SiO₂波导(I)将用于定义与光纤耦合端面上的光模式,模式变换区包括SiON锥形、双层铌酸锂锥形结构,分为三个部分:SiON锥形线性变换区域(II)、LN平板锥形区(III)、以及LN脊型和平板构成的锥形区(IV),最后为LN脊波导区(V)。

图 2 模斑转换器结构示意图

1.2 基本理论模型及参数设置

三维有限光束差分传输算法可用于计算波导的 本征模式及光束在波导中的传输情况^[18-24]。在光纤 和波导中,电磁波中的电场(磁场)满足 Helmholtz 方程:

$$\frac{\partial^2 \phi}{\partial^2 x} + \frac{\partial^2 \phi}{\partial^2 y} + \frac{\partial^2 \phi}{\partial^2 z} + k(x, y, z)^2 \phi = 0 \tag{1}$$

考虑到光轴主要沿 Z 轴传输, 作近轴和慢变化近 似, 则

$$\phi(x, y, z) = u(x, y, z)e^{i\overline{k}z}$$
⁽²⁾

式中:u(x,y,z)为光波导中的传输场; $\bar{k} = k_0 \bar{n}$,表示 $\phi(x,y,z)$ 的平均相位变化,为参考波数; \bar{n} 为参考折射 率,将公式(2)代入公式(1),得到:

$$\frac{\partial^2 u}{\partial z^2} + 2i\bar{k}\frac{\partial u}{\partial z} + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + (k^2 - \bar{k}^2)u = 0$$
(3)

作慢变化近似,即忽略
$$\frac{\partial^2 u}{\partial z^2}$$
,则
$$\frac{\partial u}{\partial z} = \frac{i}{2\bar{k}} \left[\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + (k^2 - \bar{k}^2) \right] u$$
(4)

对公式(4)实行差分,得到:

$$\frac{u_i^{n+1} - u_i^n}{\Delta z} = \frac{i}{2\bar{k}} \left[\frac{\delta^2}{\Delta x^2} + k^2 (x_i, z_{n+1/2}) - \bar{k}^2 \right] \frac{u_i^{n+1} + u_i^n}{2}$$
(5)

式中: u_i^n 为第 n 个纵向平面上第 i 个格点处的电磁场 分布; $\Delta z \pi \Delta x$ 为纵向平面之间的间隔和横向格点之间 的间隔; δ^2 为标准二阶差分因子, $\delta^2 u_i = (u_{i+1} + u_{i-1} - 2u_i)$, $z_{n+1/2} = z_n + \Delta z/2$, 根据公式 (5) 可求出波导传输方向任 意位置处的电磁场分布。

对于波导与光纤之间的模式耦合效率可表示为:

$$\eta = \eta_1 \eta_2 \eta_3 \tag{6}$$

式中:耦合效率η,为耦合端面上氧化硅波导与单模光 纤的耦合效率,由氧化硅波导与光纤中的电场重叠积 分以及模式有效折射率所决定,公式表示为:

$$\eta_1 = \frac{\left| \iint U_{fb}^* \cdot U_{WG} \mathrm{d}x \mathrm{d}y \right|^2}{\iint \left| U_{fb} \right|^2 \mathrm{d}x \mathrm{d}y \cdot \iint \left| U_{WG} \right|^2 \mathrm{d}x \mathrm{d}y} \tag{7}$$

耦合效率η₂和η₃分别表示从 SiO₂ 波导耦合端面 传输到 SiON 波导模式转换效率和从 SiON 波导端面 经双层 LN 锥形结构传输到 LN 脊型波导的模式转换 效率。为了提高这俩部分耦合效率需要采用绝热模 式传输,要求波导壁的局部扩展必须慢于最低阶模的 衍射,即锥形波导的宽度变化尽可能缓慢,因此设计 时需要在波导长度与模式转换效率之间进行权衡,在 保持较高的模式转换效率的前提下尽可能缩短波导 长度。

2 仿真及分析

2.1 铌酸锂薄膜脊波导与光纤模场特性分析

铌酸锂脊波导的单模工作条件受脊波导高度和 宽度共同作用影响,随着波导高度增加,可实现基模 工作的波导宽度越来越窄。文中选择脊高为 0.25 μm, 工作波长选取 1550 nm,研究了不同脊波导宽度对铌 酸锂薄膜波导内模式有效折射率的影响,其结果如 图 3 所示。其中 TE₀、TE₁、TE₂、TE₃分别为横电波的 基模、一阶模、二阶模和三阶模,TM₀、TM₁为横磁波 的基模、一阶模。从结果可以看出,单模工作条件内 波导最大宽度为 1 μm,为了提高结构的耦合效率,选 择 LN 脊波导宽度为 1 μm,此时,铌酸锂脊波导的基 横模 TE₀分布如图 4 所示。

单模光纤采用标准的单模光纤,其参数选择如

图 3 波导模式随脊波导宽度的变化

下:数值孔径 0.14, 芯径 8.2 μm;包层直径 125 μm, 其 模场分布如图 5 所示。从图中可以看出, 其模场尺寸 比铌酸锂脊波导的模场尺寸大很多。

Fig.5 Mode field distribution of single-mode fiber

2.2 模斑转换器设计及优化

1) SiO₂ 波导 (I区) 设计

SiO₂波导用于实现与单模光纤的高效耦合,为了 保证器件在 1.55 μm 波长处能够单模传输,SiO₂波导 需满足单模工作条件。综合目前 SiO₂波导工艺制备 条件,文中选取常用的折射率差为 0.75% 的氧化硅波 导,SiO₂波导单模工作条件下不同的波导高度(*H*₁) 和宽度(*W*₁)如图 6(a)所示。考虑与光纤圆形光斑耦 合匹配,SiO₂波导的截面尺寸单模条件最优值选择 6 μm×6 μm 正方形波导结构,该条件下的 SiO₂波导 *xy* 端面 TE₀模场分布如图 6(b)所示,通过对二者模式 进行重叠积分,可以得到 SiO₂波导与单模光纤的耦 合效率η₁为 93%。

2) SiON 锥形波导设计(II区)

SiON 锥形波导主要决定从氧化硅波导耦合端面 传输到 SiON 波导模式转换效率η₂,包括耦合效率和 传输效率两部分。为了实现高效绝热模式传输,SiON 锥形波导宽端采用单模波导结构设计。SiON 波导由 SiON 波导芯层和 SiO₂包层 (*n*=1.456)构成,作为 SiO₂ 波导和 LN 脊波导的过渡波导设计,其单模模场 尺寸应选取为二者模场的中间值,因此文中选取 SiON 波导的单模模场尺寸在 2.5 μm×2.5 μm×3.5 μm× 3.5 μm 之间,来优化选择 SiON 波导芯层折射率。图 7(a)

Fig.6 Waveguide parameters of SiO_2 waveguide under single mode condition and *x-y* cross sectional TE_0 mode field distribution of SiO_2 waveguide with 6 µm×6 µm waveguide size

为仿真得到的单模条件下最大波导模场宽度 W₂ (宽 度和高度相同)与芯层折射率、波导宽度 W₂ (高度) 之间的关系曲线。从结果可以看出, SiON 波导芯层 折射率选择 1.48~1.51, 对应波导宽度 W₂ (高度)在 3.5~ 2.5 μm 之间,可满足 SiON 波导模场设计。图 7(b) 给 出了 SiON 波导芯层折射率为 1.50, 波导宽度 (高 度)为 2.8 μm 条件下的 SiON 波导 x-y 端面基横模 TE₀ 模场分布如图 7(b) 所示。

确定了 SiON 锥形波导宽端设计后,为了提高 SiON 锥形波导的转换效率,需要优化 SiON 锥形波导

尖端宽度 W_3 和锥形长度 L_1 。以 SiO₂ 波导作为输入, SiON 宽度波导作为输出,模拟仿真了 SiON 锥形波导 尖端宽度 W_3 取为=0.1 μ m、0.2 μ m、0.3 μ m、0.4 μ m 的 情况下锥形波导长度 L_1 对转换效率的影响,如图 8 所示。由图 8 可知,耦合效率随着 W_3 增加而减小, 随 L_1 增加而增大,当 L_1 >250 μ m 且 $W_3 \le 0.3 \mu$ m 时,耦 合效率可达到 93% 以上,当 L_1 =300 μ m, W_3 =0.1 μ m 时,转换效率可达 97.2%。过渡区满足绝热模传输且 长度较小时,其传输损耗可忽略不计,结合工艺实现 考虑, L_1 可以在 250~350 μ m 内变化, W_3 可以在 0.2~ 0.3 μ m 内变化。

图 8 不同 SiON 锥形波导尖端宽度 W₁下锥形波导长度 L₁ 与转换效 率关系曲线

Fig.8 Relation curve between taper waveguide length L_1 and conversion efficiency under different SiON taper waveguide tip width W_1

3) 双层铌酸锂锥形区设计

双层铌酸锂锥形区包括 LN 平板锥形区 (Ⅲ)、 LN 脊型和平板构成的锥形区 (Ⅳ)。其中平板锥形区 (Ⅲ)高度与 LN 脊波导区平板高度一致均为 0.35 μm。 首先对 LN 平板区波导宽端宽度 *W*₅ 进行了仿真,结 果显示当平板宽端宽度 *W*₄>1.5 μm 时,无法实现横向 限制,转换效率低于 50%,此外脊波导的平板区宽度 一般为≥4 μm,为避免Ⅳ区平板宽度变化过大,因此 LN 平板锥形区宽端宽度不宜过小,可在 0.8~1.5 μm 内变化。

以 SiON 波导模式为入射光场,设定锥形区足够 长 (*L*₂>500 μm),模拟了 *W*₄分别为 0.8、1.0、1.2、1.4、 1.5 μm 情况下,锥形尖端宽度 *W*₅和 LN 平板锥形区的 转换效率之间关系曲线如图 9(a) 所示。从图中可以 看出平板锥形宽端宽度 *W*₅下对转换效率影响较小, 锥形尖端宽度 *W*₅对转换效率影响较大,需要控制在 0.15 μm 以内,以实现>95% 的转换效率,这是由于 LN 与 SiON 折射率存在差异,LN 锥形尖端宽度直接 关系着 LN 平板锥形区输出模场分布,对与 SiON 波 导耦合效率影响较大。

在此基础上进一步对平板锥形区长度 L_2 进行了 设计。令 W_5 =0.1 µm, 仿真了 W_4 =0.8、1.0、1.2、1.4 和 1.5 µm 情况下, 平板锥形区长度 L_2 与 LN 平板锥形区 对平板锥形区的转换效率的影响, 如图 9(b) 所示。从 图中可以看出, 转换效率随着 L_2 的增大而增大, 随着 W_5 的减小而增大, 当 L_2 >200 µm且 W_5 <1.4 µm 时, 转 換效率都可达>95% 以上。这是由于锥形区长度足够长,可以有效减少锥形区模式泄露而产生的模式准换损耗,因此 L_2 与可以在 200~300 μ m 内变化, W_4 可以在 0.1~0.15 μ m 内变化, W_5 可以在 0.8~1.4 μ m 内变化, 可实现 LN 平板锥形区转换效率在 96% 以上,当 W_4 =0.1 μ m, L_2 =200 μ m 时,可实现转换效率为 98.5%。

Fig.9 The influence of W_5 and L_2 on the conversion efficiency in Zone III

对于 LN 脊型和平板构成的锥形区 (IV), 其宽端 宽度和各层高度与 LN 脊型波导参数一致。为了提 高该区转换效率, 以 LN 平板锥形区宽端波导模式作 为入射光场, LN 脊型波导模式作为出射光场, 模拟了 IV 区不同锥形尖端宽度 W_6 条件下, IV 区锥形长度 L_3 与IV 区的转换效率之间关系曲线如图 10 所示。从 图中可以看出转换效率随着 L_3 增加, 先增加后趋于 稳定, 随着 W_6 的减小而增加, 当 $L_3>20 \mu m 且 W_6 \leq 0.4 \mu m$ 时, 转换效率在 98% 以上。综合套刻工艺实现和传

图 10 不同锥形尖端宽度 W₆条件下, IV 区锥形长度 L₃ 与转换效率 之间关系曲线

Fig.10 Relation curve between taper length L_3 and conversion efficiency in Zone IV under different taper tip width W_6

输效率考虑, IV 区脊型锥宽与平板尖端锥宽相差不能 过近, 因此, *L*₃ 可以在 40~100 μm 内变化, *W*₆ 可以在 0.1~0.3 μm 内变化, 可实现脊型和平板构成的锥形区 的转换效率在 99% 以上。

4) 模斑转换器传输光场分析

通过上述理论计算与仿真优化,结合工艺实现

性,得到模斑转换器的结构、传输光场 (YZ 面) 以及 不同位置截面图的光模式分布如图 11(a)~(c) 所示。 I区为光纤制合端面上 SiO2波导中的光模式分布 (参见图 11(c) 中①所示), 与单模光纤耦合效率为 93%。Ⅱ区 SiON 锥形结构中的光模式分布 (参见图 11(c) 中②所示), 光模式逐渐从 SiO2 波导中向 SION 波导(参见图 11(c) 中③所示)中转换,转换效率在 93~97.2%之间;Ⅲ区铌酸锂平板锥形区中的光模式 分布 (参见图 11(c) 中④所示), 随着 LN 平板倒锥宽度 增加,分布在LN中的光模式增加而 SiON 中光模式 分布减小,传输效率在 96%~98.5% 之间; IV区 LN 脊 型和平板构成的锥形结构中光模式分布 (参见图 11(c) 中⑤所示),逐步转化为LN脊波导光模式,转换效率 最高可达 99.9%。综合上述分析,可得到设计的模斑 转换器可实现与单模光纤耦合效率在 82.2%~89.0% 之间。进一步考核了模斑转换器与与单模光纤的对 准耦合容差,考虑到结构对称性设计,仅对横向位错 与耦合损耗的影响进行了数值模拟,如图 12 所示。 从图中可以看出,两者之间的耦合效率随着位错增加 而呈指数增加,当附加损耗为1dB时,对应的横向光 学容差为±1.8 µm。

Fig.11 (a) Structure diagram, (b) optical field transmission diagram and (c) cross section optical field distribution diagrams of designed spot size converter

Fig.12 Relationship between transverse dislocation and coupling loss

3 结 论

文中设计了一种基于 SiO₂、SiON 锥形结构以及 双层 LN 锥形结构的片上模斑转换器, 通过理论计算 和数值仿真对模斑转换器的关键参数进行了优化,在 保证工艺可行性情况下,得到如下参数设计:SiO2输 入波导选择芯层折射率差 0.75%, 波导尺寸为 6 μm× 6 um; SiON 锥形波导宽端模场尺寸在 2.5 um × 2.5 um ~ 3.5 um×3.5 um 之间, 对应芯层折射率在 1.48~1.51 之 间, SiON 锥形波导长度 L1>250 µm 且锥形尖端宽度 W3 在 0.1~0.3 µm 之间; LN 平板锥形长度 L2 与可以 在 200~300 μm 内变化, LN 平板锥形尖端宽度 W4 可 以在 0.1~0.15 μm 内变化, 宽端宽度在 0.8~1.4 μm 内 变化:LN 脊型和平板构成的锥形区长度 L3 可以在 40~100 µm 内变化, 脊波导锥形尖端宽度 W6 可以在 0.1~0.3 μm 内变化,可实现与铌酸锂薄膜波导与单模 光纤的高效耦合,耦合效率在82.2%~89.0%之间,同 时,得到了较高的耦合容差,有效降低了器件与单模 光纤耦合难度。文中提出的基于 SiO₂、SiON 锥形结 构以及双层LN锥形结构的模斑转换器为铌酸锂薄 膜光子器件的耦合和集成化提供了新方法。此外,在 器件参数设计时,充分考虑后续工艺实现性,有利于 后续器件的加工实现。

参考文献:

[1] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible

voltages [J]. Nature, 2018, 562(7725): 101-104.

- [2] Morton P A, Khurgin J B, Morton M J. All-optical linearized Mach-Zehnder modulator [J]. *Optics Express*, 2001, 29(23): 37302-37313.
- [3] Sun Shihao, Cai Xinlun. High-performance thin-film electrooptical modulator based on heterogeneous silicon and lithium niobate platform (Invited) [J]. *Infrared and Laser Engineering*, 2021, 50(7): 20211047. (in Chinese)
- [4] Gao R, Yao N, Guan J, et al. Lithium niobate microring with ultra-high Q factor above 10⁸ [J]. *Chinese Optics Letters*, 2022, 20(1): 011902.
- [5] Gao R, Zhang H, Bo F, et al. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 10⁸ [J]. *New J Phys*, 2021, 23(12): 123027.
- [6] Zheng Y, Chen X. Nonlinear wave mixing in lithium niobate thin film [J]. *Advances in Physics: X*, 2021, 6(1): 1889402.
- [7] Lin J, Yao N, Hao Z, et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator [J]. *Phys Rev Lett*, 2019, 122(17): 173903.
- [8] Xu B Y, Chen L K, Lin J T, et al. Spectrally multiplexed and bright entangled photon pairs in a lithium niobate microresonator
 [J]. Sci China-Phys Mech Astron, 2022, 65(9): 294262.
- [9] Xue G T, Niu Y F, Liu X, et al. Ultrabright multiplexed energytime-entangled photon generation from lithium niobate on insulator chip [J]. *Phys Rev Appl*, 2021, 15(6): 064059.
- [10] Lin J, Farajollahi S, Fanget Z, et al. Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser [J]. Adv Photon, 2022, 4(3): 036001.
- [11] Zhang P, Huang H, Jiang Y, et al. High-speed electro-optic modulator based on silicon nitride loaded lithium niobate on an insulator platform [J]. *Optics Letters*, 2021, 46(23): 5986-5989.
- [12] Wang C, Zhang M, Yu M J, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation [J]. *Nature Communications*, 2019, 10(1): 978.
- [13] Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator [J]. *Nature*, 2019, 568(7752): 373-377.
- [14] Pohl D, Escalé M R, Madiet M, et al. An integrated broadband spectrometer on thin-film lithium niobate [J]. *Nat Photonics*, 2020, 14(1): 24-29.
- [15] He L, Zhang M, Shams-Ansari A, et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits [J]. *Optics Letters*, 2019, 44(9): 2314-2317.

- [16] Hu C, Pan A, Li T, et al. High-efficient and polarization independent edge coupler for thin-film lithium niobite waveguide devices[EB/OL]. (2020-09-07)[2022-12-27]. https:// arxiv.org/abs/2009.02855.
- [17] Pan Y, Heyun T, Zhang J, et al. Low-loss edge-coupling thinfilm lithium niobate modulator with an efficient phase shifter [J]. *Optics Letters*, 2021, 46(6): 1478-1481.
- [18] Press W H, Flannery B P, Teukolsky S A, et al. Numerical Recipes: The Art of Scientific Computing[M]. 3rd ed. New York: Cambridge University Press, 1986: 156-163.
- [19] Rsoft Design Group. Beam PR, OP7.0 user guide[Z]. Ossining: Rsoft Design Group Inc, 2006.
- [20] Hadley G R. Transparent boundary condition for beam

propagation method [J]. Optics Letters, 1991, 16(9): 624-626.

- [21] Hadley G R. Transparent boundary condition for the beam propagation method [J]. *IEEE Journal of Quantum Electronics*, 1992, 28(1): 363-370.
- [22] Vassalo C, Collino F. Highly efficient absorbing boundary condition for the beam propagation method [J]. *Journal of Lightwave Technologyvol*, 1996, 14(6): 1570-1577.
- [23] Huang W P, Xu C L, Lui W, et al. The perfectly matched layer (PML) boundary condition for the beam propagation method [J]. *IEEE Photonics Technology Letters*, 1996, 8(5): 649-651.
- [24] Chiou Y P, Chang H C. Complementary operators method as the absorbing boundary condition for the beam propagation method [J]. *IEEE Photonics Technology Letters*, 1998, 10(7): 976-978.

Design of high-efficiency lithium niobate thin film waveguide mode size converter

Ding Guojian¹, Wang Xiaohui¹, Feng Qi¹, Yu Ping¹, Jia Haiqiang^{1,2}, Chen Hong^{1,2}, Wang Yang^{1*}

(1. Songshan Lake Materials Laboratory, Dongguan 523808, China;

2. Key Laboratory for Renewable Energy, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)

Abstract:

Objective The photonic integration technology based on lithium niobate thin films has become increasingly prominent in the field of high-speed optoelectronics, and is widely used for various on-chip functions, such as electro-optical modulation, optical frequency comb, filter, nonlinear optical frequency converter, nonlinear quantum light source, laser etc. In the development of lithium niobate film photonic integration technology, there is an important technical bottleneck which is the effective coupling of lithium niobate film nanowaveguides and single-mode fibers, which is also the key to hinder the practical application of lithium niobate thin film photonic devices. On-chip mode size converter is widely used in mode field transformation to realize waveguide mode field transformation. Although the existing researches have improved the coupling efficiency by using bilayer tapered waveguides or composite structures, they are all coupled with tapered fiber or thin diameter fiber, which still cannot achieve effective coupling with single-mode fiber. To solve this problem, a mode size converter based on SiO₂ waveguide, SiON tapered waveguide and bilayer LN tapered waveguide is designed to achieve efficient mode and energy transfer and conversion between lithium niobate film nanowaveguide and single-mode fiber.

Methods The structure of the mode size convertor composed of SiO_2 waveguide, SiON tapered waveguide and bilayer LN tapered waveguide is simulated by using the three-dimensional finite difference beam propagation method, and the structural parameters of each section are sequentially optimized through optical pattern matching design and adiabatic mode transmission design, and the optical coupling efficiency and adiabatic mode conversion efficiency of each section are simulated.

Results and discussions The research results show that when the refractive index difference between the core layer and cladding layer of the SiO₂ waveguide is 0.75% and the size of SiO₂ waveguide is $6 \mu m \times 6 \mu m$, the

红外与激光工程 www.irla.cn

coupling efficiency between SiO₂ waveguide and single-mode fiber is about 93% (Fig.6). When the mode field size of the wide end of SiON tapered waveguide is 2.5 μ m×2.5 μ m×3.5 μ m×3.5 μ m, the refractive index of the corresponding core layer is 1.48-1.51, the length of the SiON tapered waveguide (L_1) is greater than 250 μ m and the width of the tapered tip W_3 is 0.1-0.3 µm, the optical mode is gradually converted from the SiO₂ waveguide to the SiON waveguide, and the conversion efficiency of the SiON tapered waveguide is 93%-97.2% (Fig.8). The bilayer LN tapered waveguide includes the LN tapered planar waveguide and the LN tapered ridge waveguide. In the LN tapered planar waveguide, when the tapering length (L_2) changes in the range of 200-300 µm, the width of the tapered tip W_4 changes within 0.1-0.15 µm, and the width of the wide end (W_5) changes in the range of $0.8-1.4 \,\mu\text{m}$, the optical mode profile in LN tapered planar waveguide increases with the increase of the inverse taper width of LN tapered planar waveguide, while that in SiON layer decreases, and the conversion efficiency of the LN tapered planar waveguide is 96%-98.5% (Fig.9). In the LN tapered ridge waveguide, when the length of LN ridge tapered waveguide (L_3) varies from 40 to 100 μ m, and the width of the tapered tip of LN ridge tapered waveguide W_6 varies from 0.1 μ m to 0.3 μ m, the optical mode is gradually converted into LN ridge waveguide optical mode, and conversion efficiency of the LN tapered ridge waveguide exceeds 99% (Fig.10). Through the above design, effective coupling with lithium niobate film waveguide and single-mode fiber can be realized, and the coupling efficiency is 82.2%-89.0% (Fig.11). At the same time, $\pm 1.8 \mu m$ fiber coupling alignment tolerance is obtained (Fig.12).

Conclusions The proposed mode size converter based on SiO_2 waveguide, SiON tapered waveguide and bilayer LN tapered waveguide provides a new method for the coupling and integration of lithium niobate thin film photonic devices, which can provide a reference for the next step of preparing highly efficient coupling lithium niobate thin film photonic devices, and is beneficial to further realize the integrated application of lithium niobate devices.

Key words: integrated optics; mode size converter; three-dimensional finite difference beam propagation method; lithium niobate film; coupling efficiency; single mode fiber